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Abstract: We have developed a novel optical approach to determine 
pulsatile ocular volume changes using automated segmentation of the 
choroid, which, together with Dynamic Contour Tonometry (DCT) 
measurements of intraocular pressure (IOP), allows estimation of the ocular 
rigidity (OR) coefficient. Spectral Domain Optical Coherence Tomography 
(OCT) videos were acquired with Enhanced Depth Imaging (EDI) at 7Hz 
during ~50 seconds at the fundus. A novel segmentation algorithm based on 
graph search with an edge-probability weighting scheme was developed to 
measure choroidal thickness (CT) at each frame. Global ocular volume 
fluctuations were derived from frame-to-frame CT variations using an 
approximate eye model. Immediately after imaging, IOP and ocular pulse 
amplitude (OPA) were measured using DCT. OR was calculated from these 
peak pressure and volume changes. Our automated segmentation algorithm 
provides the first non-invasive method for determining ocular volume 
change due to pulsatile choroidal filling, and the estimation of the OR 
constant. Future applications of this method offer an important avenue to 
understanding the biomechanical basis of ocular pathophysiology. 

©2015 Optical Society of America 

OCIS codes: (170.3880) Medical and biological imaging; (170.4460) Ophthalmic optics and 
devices; (170.6935) Tissue characterization. 
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1. Introduction 

The development of non-invasive methods to estimate ocular rigidity (OR) will have 
profound implications for research into ocular disease. Importantly, glaucoma remains a 
major cause of blindness due to formidable challenges in both its diagnosis and treatment, and 
its pathogenesis is poorly understood. Reducing intraocular pressure (IOP) is the most widely 
used clinical method for halting the progression of open angle glaucoma (OAG). However, 
the link between IOP and development of OAG is not straightforward [1–7]. Considerable 
recent evidence from experimental studies in primates and from mathematical modeling 
suggests that ocular biomechanics may play a major role in glaucoma pathogenesis [8–17]. 
According to finite element modeling, major determinants of optic nerve head stress and 
strain leading to glaucoma damage include IOP, but also scleral elasticity as well as other 
biomechanical factors. In fact, scleral elasticity is considered to be the most important 
determinant of optic nerve head stress and strain, more important than IOP [18] and it is clear 
that additional factors, such as ocular biomechanics, must play an important role. 

Additionally, several investigations into age-related macular degeneration (AMD) have 
led to both mechanical and ischemic theories of pathophysiology related to OR, particularly in 
neovascular AMD [20, 21], but it remains unknown as to whether changing rigidity plays a 
role in the pathophysiology of this disease. Reduced scleral rigidity is also an important 
feature of pathological myopia [19]. 

The rigidity of the eye can be derived from the Friedenwald’s empirical function that 
estimates the change in IOP produced by a modification of the ocular volume V, according to: 

 0
0

ln ( - )
IOP

k V V
IOP

 
= 

 
   (1) 

where k is the OR [22], accounting for the combined mechanical properties of the retina, 
choroid and sclera. For a given volume change, more rigid eyes will have a correspondingly 
larger increase in IOP, and vice versa for less rigid eyes. Since the sclera is responsible for the 
majority of the stiffness of the ocular globe, Eq. (1) can also be derived through a 
simplification of the collagen-like stress-strain behaviour exhibited by the sclera and by 
considering the eye to be a thin-shelled sphere [23, 24]. This formula allows computing the 
overall ocular rigidity from the combined measurements of IOP and ocular volume changes. 

The ocular volume fluctuates due to the pulsatile vascular filling. Since 90% of blood flow 
into the eye is though the choroid [25], we propose to model the fluctuations of ocular volume 
by estimating the total choroidal volume change over time. 

Although to date investigations into the elastic properties of the eye have produced values 
for this rigidity constant, they have either been on post-mortem testing [4, 12, 16], they make 
use of invasive cannulation in order to control the volume change [19], estimate indirectly the 
ocular volume change [26, 27] or use measurements that intrinsically depend on ocular 
rigidity to estimate OR [27, 28]. For clinical applications, ocular volume change (and thus 
OR) needs to be measured non-invasively, but no technology is available to measure them in 
a clinical environment. 
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Recent advances in optical coherence tomography (OCT), specifically with Enhanced 
Depth Imaging (EDI), have improved the signal to noise ratio in deeper tissues to the point 
that the choroidal-scleral interface (CSI) can now be distinguished. Segmentation methods 
exist to delineate this interface from high quality images [29–32], but the fast acquisition 
required to assess the changes of choroidal volume with pulsatile blood flow limits the 
imaging signal to noise ratio (SNR), thereby complicating the segmentation. 

In this paper we propose a novel method for automated choroid segmentation in sequential 
FD-OCT images that is relatively robust to noise and low image quality, and which allows us 
to estimate the volumetric changes of the eye due to choroidal pulsations. These 
measurements, in combination with intraocular pressure measurements and biometry, allow 
the first non-invasive, direct estimation of OR. 

2. Method 

In order to track the pulsatile volume changes due to choroidal filling, B-scans have to be 
acquired faster than the heart rate, which renders the CSI nearly indistinguishable from noise. 
Our method computes the area between the posterior part of the RPE layer and the CSI to 
extrapolate choroidal volume changes based on a simple model detailed below. We have 
found that previous choroidal segmentation methods are not robust enough for our 
application; hence a new approach is required. 

We combined a robust contour-detection method with a graph search based on a novel 
weighting scheme to develop a segmentation algorithm that boosts the reliability of CSI 
delineation, as described below. 

2.1 Data collection 

Images of the choroid were acquired using a FD-OCT (Spectralis OCT Plus, Heidelberg 
Engineering, Germany) system whose software was modified to provide time series where 
each frame results from the average of an adjustable number of B-scans. The acquisition was 
set to high-speed mode (496 pixels per A-scan x 768 A-scans images), enhanced depth 
imaging (EDI), using a class 1 laser at 870nm, and 30° wide (8-9 mm on the retina, optimized 
for each subject). With these settings, B-scans can be acquired at a maximum of 40Hz, at 3.9 
μm axial and 11 μm of lateral resolution, and at 400 images the memory buffer is filled. The 
number of B-scans per frame is determined by the required time resolution of the series but it 
also impacts the quality of individual frames. Averaging 5 scans per image (8 Hz sampling) 
was an acceptable trade-off. Measurements were centred on the fovea and the azimuthal angle 
was chosen to maximize the visibility and continuity of the CSI for each subject. While a full 
400-frame movie was acquired the subject’s heart rate was measured with a finger oximeter. 

The system is equipped with an eye-tracker to keep the scanning beam in place, but this 
feature also introduces pauses into the acquisition, producing fluctuations both in the number 
of averaged B-scans per frame and in the acquisition rate. Since the resulting time series are 
unequally spaced, the image’s time-stamp was used when computing the frequency spectrum. 
Only frames with Spectralis’ quality parameter above 20 were kept in the time series. 

Immediately after imaging, the intraocular pressure is measured with a Pascal Dynamic 
Contour Tonometer, which is not dependant on corneal rigidity [33]. The average of three 
measurements having a Quality Index (Ziemer proprietary algorithm) not below 3 is 
computed. This provides two values, the intraocular pressure (IOP) at diastole and the ocular 
pulse amplitude (OPA), which represents the difference between diastolic and systolic 
pressure. 

2.2 Preprocessing 

Depending on eye size, a variable portion of the retina may be visible in each movie. Since we 
are only interested in estimating the volumetric changes of the eye due to choroidal filling 
(extrapolated from 2D images) we discard A-scans near the optic disk, where the choroid is 
absent (Fig. 1(A)). Every image in the time-series is then aligned to the first one, using Matlab 
(The MathWorks, Natick, MA) imregister function with mean squared error metric and one-
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plus-one evolutionary optimizer. The registration is limited to rigid transformations (i.e. no 
shear or dilation) to prevent biasing the measurements with artificial image distortions. Each 
frame is then analyzed independently, provided the Spectralis’ metric of Quality is not lower 
than 20, and at least two raw scans are averaged to create the frame used for further analysis. 

To enhance the likelihood of correctly delineating layers of interest, despite variations in 
individual retinal shapes, the algorithm identifies several retina layers sequentially, in an 
anterior to posterior direction. We first normalize each A-scan to its maximum intensity, 
remove noise with a 5x5 pixels Wiener filter, and apply a Canny edge detector with 
thresholds of 0.01 and 0.3 The Gaussian filter size of the edge detector (σ = 4) is chosen large 
enough to ensure the top layer, the retina-vitreous interface (RVI), is continuous. This layer is 
segmented by joining the topmost 8-connected edge segments that are wider than 50 A-scans 
with cubic splines (Fig. 1(B), green line). 

The next two segmented layers, the anterior and posterior interfaces of the retinal pigment 
epithelium (RPE), have been segmented using a previously published strategy [31], where a 
few modifications have been added to improve robustness. We profit from the positive 
intensity gradient that separates the neuroretina and the RPE, and the negative gradient 
between RPE/Bruchs membrane (BM) and the choroid to delimit these two interfaces more 
robustly by finding them together. After computing the gradient of the raw image and 
smoothing with a Gaussian kernel (σ = 3pix horizontally and σ = 0.5pix vertically), we search 
for its positive maximum in each A-scan between 39µm and 780µm below the RVI. The 
resulting points are connected with a local 2nd degree polynomial least squares weighted fit, 
to render the RPE (Fig. 1(B), red line). Analogously, the negative gradient minima found 
between 39µm and 117µm below the anterior RPE, are connected to give the posterior RPE 
(Fig. 1(B), blue line) 

Since we use a graph search method to segment the CSI, each image is 'flattened' with 
respect to the RPE in order to eliminate erroneous paths introduced by the curvature or tilt of 
the image. This is done by shifting and zero-padding each A-scan until the pixels that describe 
the posterior RPE are vertically aligned [31] (Fig. 1(C)). 

 

Fig. 1. Automated segmentation of retinal layers of interest from OCT images. The image in A 
is a typical frame from the video series. A) A-scans where the choroid is absent (highlighted in 
green) are discarded from all frames. B) Segmentation of the outmost layers of the retina: RVI 
is indicated in green, anterior RPE in red, and posterior RPE in blue. The A-scans are shifted 
so that the blue layer appears flattened (C). 

2.3 CSI segmentation 

We developed a segmentation method for the CSI to match the particular requirements of our 
application. In EDI-OCT scans, the CSI is a remarkably heterogeneous boundary consisting 
of fragments of blood vessel cross-sections, which cannot be segmented with usual edge 
detection approaches. Graph search edge detection is especially well suited for this problem 
as has already been shown [31]. Briefly, this approach associates pixels that loosely describe 
the target interface to nodes in a graph, and minimizes the path across the nodes based on 
weights assigned to each connection. The reliability of the method depends strongly on the 
choice of nodes and the weights. Previous implementations of graph search to segment the 
CSI do not suit the present application where subtle changes are essential for accurate 
measurements of ocular rigidity. 
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We propose a novel approach that combines graph search with a robust contour detection 
method, which additionally profits from information gathered in time to boost the reliability 
of the segmentation. 

Node locations 

In earlier work, graph nodes were found using variations of image intensity along each A-scan 
[31]. Tian et al. looked for local maxima and minima of intensity, and used their valley pixels 
(the local minima) as nodes. Our implementation of this approach is unsuitable for this work 
for two reasons. Firstly, with this approach local minima are placed in the center of visible 
blood vessels rather than their bottom border, where the real CSI lies. Secondly, due to high 
noise, node detection is unreliable. Our approach provides a much improved weight function 
that favours nodes located at regions of higher local contrast and also profits from time-series 
information. 

We find nodes using the smoothed first and second gradient of image intensity along each 
A-scan. The input in both cases is the A-scans of a preprocessed image, which has been 
smoothed with a span of 10 pixels. Pixels in which the first derivative exceeds a positive 
threshold of 0.7 identify the dark-to-light transition characteristic of the deepest interface of 
the choroid blood vessels. Additionally, those pixels whose second derivative absolute values 
are smaller than a near-zero threshold (10−16) mark the inflection point of intensity on the 
lower extremity of the transition. A binary image meeting both conditions undergoes a 
sequence of morphological operations that reduce the detected regions to isolated pixels. First, 
regions are cleaned to eliminate single-pixel regions. Then, regions are filled to eliminate 
holes, prior to being skeletonized in order to retain only the central pixels of each connected 
region. Next, all pixels in every other column are eliminated to reduce the number of nodes 
the graph search must include. Images are shrunk to ensure any remaining regions are single 
pixels. Then extended-minima transformation is computed for the original preprocessed 
intensity image with a threshold of 10 pixels, to find the rough central shadow of large blood 
vessels, and any nodes that intersect these shadows are eliminated. Finally, those pixels at a 
depth greater than 150 pixels (585 µm) from the BM are also discarded (green dashed line in 
Fig. 2 E), since the CSI is unlikely to go this deep. The remaining pixels pinpoint the nodes 
fed to the graph search (yellow pixels in Fig. 2 E). 

Graph search 

The graph is constructed by connecting each node to all other nodes in the neighbourhood 
delimited by Cmax columns to the right and Rmax rows above and below it. Cmax must be 
sufficiently large to ensure the resulting graph is connected, even across dim regions with 
sparse nodes [31]. Connections between each pair of nodes a and b are assigned weights 
according to: 

 ( , ) Euclid Vert Horiz Affinw a b w w w w= + + +  (2) 

wEuclid is the Euclidean distance squared (Δx2 + Δy2) where ∆x and ∆y are the horizontal and 
vertical distances respectively, between a and b. This term encourages the algorithm to 
delineate the path by connecting closely spaced nodes. To prevent abrupt vertical fluctuations, 
Tian et.al. incorporates the term wVert, defined as [31]: 

 
( )( )

( )
,

1 exp
V V V

Vert

V

w H y T y T
w

y Tα
Δ − Δ −

=
+ − Δ −

  

where H is the Heaviside function, wv is a constant parameter controlling the relative weight 
of this term, and α governs the sigmoid function growth rate. This term adds extra penalty to 
connections longer than the threshold Tv in the vertical direction, which are unlikely in a real 
interface. 
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Indeed, the CSI is most likely smooth, but the minimal distance condition does not 
guarantee a smooth interface. In fact, the shortest path between any two nodes is a straight 
line that avoids intermediate nodes, even if they are close together. Actually, the hard 
thresholds Cmax and Rmax prevent the graph search from just tracing a straight line between 
start and end nodes, because they limit the maximum length of edge segments. Unfortunately, 
these parameters cannot be reduced arbitrarily since they have to be long enough to overcome 
gaps produced by missing nodes. Therefore, in order to improve the edge smoothness while 
preventing gaps, we added a horizontal weight term 

 
( )

,
1 exp( ( ))
H H H

Horiz
H

w H x T x T
w

x Tα
Δ − Δ −

=
+ − Δ −

  

which along with wVert provides soft thresholds (TV and TH) that favor paths made of short 
segments. 

Due to the inhomogeneous nature of the CSI, combined with the low SNR resulting from 
high-speed acquisition, the node locations retrieved with the method above are not reliable 
enough for the graph search to delineate the right interface. To reinforce the reliability of the 
segmentation we compute a boundary probability which we use to compute a connection 
weight wAffin that favors paths through the most likely boundary. 

An excellent choice for this is a multi-scale, multi-orientation approach such as the 
contour-detection algorithm by Arbelaez et al. [34]. This method computes the posterior 
likelihood X2 that each pixel (i,j) in the image belongs to a boundary of scale σ at orientation 
θ. The computation uses the histograms g(I) and h(I) of pixels intensities in the two halves of 
a disk of radius σ, centered on (i,j), and divided along its diameter at an angle θ (Fig. 2(B) and 
2(D)), according to the formula: 
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The sum above runs over all intensity bins of the histograms. In contrast to the original 
method, we computed the boundary probability Pb as: 

 21
( , ) max ( , , , )bP i j X i j

K θ σ
σ θ =  

 
   

where the constant K ensures Pb normalization. As an example, Fig. 2(C) shows the color-
coded Pb corresponding to Fig. 2(A). 

Even with EDI, the OCT signal from deep sections of the eye is often weak and 
inhomogeneous due to the presence of attenuating structures above them, including blood 
vessels. In order to improve the reliability of Pb, we used the adaptive image enhancement 
proposed by Mari et al, to increase the contrast in the region extending from 5 pixels below 
the RPE to the bottom (Fig. 2(B)) [29, 35]. The weighting of the graph search, node locations 
and connectivity matrix are fundamentally different from previous approaches that used such 
compensation [29]. 

Since the computation of Pb is time intensive, we restricted it to a region no deeper than 
150 pixels below the RPE, as depicted by the green dashed line in (Fig. 2(E)), where the CSI 
is most likely found. 

Finally, the term wAffin is computed as 

 A
Affin

w
w

A
=   

where A is the line integral of Pb along the segment that connects a and b, and wA is the 
relative weight of the term. wAffin penalizes connections between nodes with low probability 
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of belonging to an edge. This term is of crucial importance for the low SNR conditions of our 
application, where the reliability of nodes is low. 

 

Fig. 2. A) The uncompensated sub-RPE region. B) The same region, compensated and contrast 
enhanced, to which the oriented gradient algorithm will be applied. Overlaid is an example 
disk of radius 30 pixels. The red and green regions correspond to their respectively coloured 
histograms (D). C) The oriented gradient image, composed of the combination of the X2 
images of different scales and orientations, as described. The heat map shows pixels which are 
very likely to lie on a boundary. Even weak boundaries can be detected while excluding noisy 
regions with this method. E) Overlay of the oriented gradient image (heatmap), node locations 
(yellow x’s), and the CSI found using these two inputs to the graph search (redline), onto the 
flattened B-scan. The green dashed line shows the limit of 585 µm below the Bruchs beyond 
which nodes are discarded. F) The original B-scan overlaid with the RPE (blue), CSI (yellow) 
and the mean RPE-CSI distance or CT (red dotted line). This distance CT is what is tracked 
from frame to frame. 

For the start and end nodes, two 'virtual' nodes are added before the first and after the last 
columns, and are connected to the nodes inside the image as per the restrictions on Cmax. The 
graph search then uses Dijkstra's algorithm [36] to find the minimum-weight path between 
these virtual nodes. The resulting path is finally interpolated and smoothed to render the CSI 
boundary. 

Due to high noise, delineation errors may occur in some frames, yielding unrealistic CSI 
profiles. Assuming that the CSI should not undergo significant change in shape during the 
cardiac cycle, we use the contours computed on all frames to correct for these outliers. First, 
we compute the mean CSI curve over all frames, and we measure the correlation of each 
individual frame CSI to the mean curve. We recomputed the frames whose CSI correlation 
fall below the mean correlation value, those in which the total area (in pixels) enclosed 
between the posterior RPE and CSI differs more than 3000 from the median, and those whose 
depth of the first or last pixel of the CSI deviate by more than 15 pixels from their respective 
means. For this second computation an additional weight term is included, as: 
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where δy is the distance in pixels between node b and the height of the mean CSI in the 
corresponding column, and ε is the allowable deviation from the mean CSI. Additionally, the 
start and end nodes are assigned the coordinates of the mean CSI at the edges, and their 
weights can now be computed like for the other nodes. Only those frames in which the CSI 
correlation to the mean improved, are updated, and frames that do not meet the above criteria 
are excluded from further analysis. 

2.4 Computation of ocular rigidity 

Once the RPE and CSI delineations are determined, the mean RPE-CSI distance across A-
scans is computed in each frame, giving a time series of sub-macular choroidal thickness 
(CT), as shown in Fig. 3(A) (bottom) as a black line. As expected, the frequency spectrum 
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analysis on most time series also revealed high frequency components coincident with the 
first and second harmonics of the heart rate frequency FH (see Fig. 3(B), black line), which we 
measured independently from the oximeter signal (Fig. A and B, top). This correlation proves 
that CT fluctuations in time are, at least in part, due to the pulsatile blood flow. For spectral 
analysis we used the Lomb-Scargle periodogram [37] instead of the popular Fourier 
Transform because CT time series are unequally sampled. This is due to images of Spectralis 
quality metric below 20 being omitted from the time series or to pauses in the acquisition due 
to the eye tracker. 

 

Fig. 3. Spectrum analysis of CT fluctuations in time. A) Top: Oximeter signal. Bottom: Raw 
fluctuations of CT versus time (black). Overlaid in red is the band-pass filtered CT signal (red). 
B) Frequency spectrum of the oximeter signal (top), and CT signal (bottom), where the offset 
component has been omitted. The filtered frequency band for the CT spectrum is shown in 
red..The dashed blue lines indicate the two first harmonics of the measured heart rate which are 
observed in both signals. 

In order to extract the CT fluctuations associated mainly to the heart rate and discard 
respiration, head movement, saccades and segmentation noise, we filter out frequency 
components below ½ FH, above 3FH, and those with values below 10% of the maximum peak 
within this range (Fig. 3(B), red line). The inverse Fourier Transform was used to retrieve the 
filtered signal (Fig. 3(A), red line). 

The pulsatile fluctuation of CT is obtained by using a windowed peak-to-valley algorithm, 
which ignores peaks and valleys that are spaced in time less than 1/6 of the heart period (TH = 
1/FH), or that are smaller than 10% of the maximum peak. All sequential peak-to-valley gaps, 
which are greater than the vertical resolution of the Spectralis OCT (4 µm for the used 
settings), are averaged to render the final ΔCT. 

The ocular volume change ΔV = V-Vo is derived from ΔCT using a first order 
approximation of a spherical eye model. In it, the choroid is modeled as the volume between 
two spheres shifted by ΔCT, as: 

 2V R CTπΔ = Δ   
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where R is the axial length half distance, measured with usual biometric tools. This simple 
model accounts for the tapering of the choroid towards the anterior section of the eye. Using 
this volume change, and computing the IOP fraction as: 

 
0

IOP IOP OPA

IOP IOP

+=   

we can solve Eq. (1) for k, the value of OR. 

2.5 Subjects 

In order to test our method, we enrolled 45 subjects from the Ophthalmic Clinic. Since the 
aim of the study was to test the ability of our approach to measure OR, the sole eligibility 
criteria imposed on the subjects was that eyes had to be clear enough media to allow 
distinguishing the choroid-sclera interface from the OCT images. The study protocol adhered 
to standards outlined in the Declaration of Helsinki. All participants were informed of the 
nature and objective of the study, the procedures that would be performed and the risks, and 
gave their informed consent. The local research ethics committee approved the protocol. 

3. Results 

This work introduces a novel method for assessing the Ocular Rigidity non-invasively from 
OCT time series and usual biometric measurements. One important component of the method 
is the algorithm capable of segmenting the CSI from low SNR images. In the next subsections 
we describe experiments that demonstrate the improvements provided by this novel CSI 
segmentation, as well as OR measurements on our cohort of subjects that validate the 
methodology. 

3.1 Evaluation of CSI Segmentation 

In contrast to some segmentation problems, there is no gold standard for the choroid contour 
to compare with; therefore we need to use an alternative approach to validate the new 
algorithm. Ophthalmologists and other eye specialists typically assess OCT images depicting 
the choroid qualitatively; hence they are the best-suited people to evaluate the CSI 
segmentation efficiency. We presented a set of 25 OCT images to 5 independent specialists 
using a tablet equipped with a stylus to delineate the choroidal-scleral interface on top of the 
OCT images. We retrieved the manual contours and compared them with the automated traces 
yielded by our method and Tian’s [31] (for example, see Fig. 4(A) and 4(B)). For each image, 
we calculated the average manually segmented CSI based on the 5 independent traces and 
compared the performance of each specialist and both automated methods. Histograms of 
deviation from the mean trace for every A-scan of all images are shown as violin plots in Fig. 
4(C). Such histograms illustrate the improved capacity of our method, which is virtually 
indistinguishable from the specialist’s. 

The image shown in Fig. 4(A) illustrates one of the main problems of Tian’s method 
mentioned above. The nodes are mostly located in the middle of the vessels, rather than on 
their bottom edge, and this causes the overall offset that can be observed in Fig. 4(C). 
Furthermore, noise can cause the image to be crowded with intensity minima, which renders a 
purely Euclidean shortest path to be located blow the CSI (see Fig. 4(B)). 
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Fig. 4. Segmentation results for the proposed method (blue), Tian’s method (red) and manual 
tracings (green). A set of 25 OCT images was manually segmented by 5 independent 
specialists and used for benchmarking our method. A, B) Examples illustrating the 
performance. C) We calculated the average manually segmented CSI and compared the 
performance of each specialist and both automated methods. Histograms of deviation from the 
mean trace for every A-scan of all images are shown as violin plots 

3.2 Measurements of ocular rigidity 

In order to test our approach, we measured the ocular rigidity on a group of subjects, as 
described above. The mean CT was 263.8 (SD = 78.4) µm. The mean magnitude of thickness 
change at the macula ΔCT was 16.7 (SD = 10.9) µm. The pulse volume ΔV was 7.8 (SD = 
4.9) µL, and this was used to estimate the pulsatile ocular blood flow (POBF) 595.6 (495.1) 
µL/min, by multiplying with heart rate (HR) measured while OCT images were acquired. 
Finally, the mean OR constant in the tested set was 0.028 (SD = 0.022) 1/µL. 

A positive correlation was observed between OR and OPA (Fig. 5(A)). Although small, 
this correlation is consistent with the reasoning that for a more rigid scleral shell, larger 
pressure pulses are expected. More importantly, we observed a statistically significant 
negative correlation between OR and the axial length (AL) (see Fig. 5(A)) which agrees with 
a recent study that uses cannulation to artificially modify the eye volume [19]. 

 

Fig. 5. Ocular rigidity measurements. A) Correlations of OR with OPA and AL. B) 
Reproducibility results (4 subjects). Along with ICC value, its lower and upper bonds for alpha 
= 0.05, are indicated. 

Finally, four subjects were measured repeatedly to assess the reproducibility of the 
method. The results plotted in Fig. 5(B) show that the OR assessment is reproducible across 
the whole range of rigidity values observed in this study. In fact, these measurements render 
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an intraclass correlation coefficient of 0.96, with a lower confidence band (at α = 0.05) of 
0.63. Altogether, these results validate our method to measure the ocular rigidity. 

4. Discussion 

The Friedenwald equation is the currently accepted conceptual framework for investigating 
the pressure-volume relationship in the eye. It synthesizes the pressure-volume curve in a 
single value, the ocular rigidity constant, which simplifies the study of relationships to other 
variables [19, 26, 27, 38]. It is important, however, to ensure that the quantities involved in 
this formula represent the real physical changes occurring in the eye. Given that the primary 
physiological cause of pressure fluctuations in the eye is the pulsatile choroidal volume 
change, the method we present offers the most representative determination of ocular volume 
change through non-invasive direct quantification, rather than through indirect variables such 
as fundus pulse amplitude (FPA) [27] or laser Doppler flowmetry of pulsatile choroidal blood 
flow [11]. As opposed to FPA, our method directly measures the expansion of the choroid 
produced by blood inflow. 

The method used to calculate ocular volume change from change of choroidal thickness at 
the macula is a first order approximation. The fluctuation ΔCT is found in a relatively small 
(~9mm) section at the fundus, which amounts to between 15 and 20% of the average 
circumferential length of the choroid of the eyes included in this study, but accounts for a 
greater percentage in terms of total choroidal blood flow since the macular region has the 
greatest perfusion. Choroidal thickness has been shown to vary not only in the temporal-nasal 
directions [39], but more generally in all directions [40]. However, mean CT found using our 
automated segmentation (263.8 µm) agrees closely with other studies centered on the fovea 
making use of manual CSI segmentation [39, 40]. Additionally, the pulse volume ΔV and 
POBF agree with estimated values obtained both using commercial devices that assume a 
given ocular rigidity [41], and using the slope of pressure-volume curves and OPA [19]. 
Together these results provide good evidence for not only the proper segmentation of the 
choroid, but also that the dynamic change in volume is being well computed. Importantly, as 
opposed to some other approaches to measure choroidal blood flow, the results obtained with 
our method based on OCT segmentation is neither sensitive nor biased by axial head 
movement. 

Alternative equations to refine the volume estimation as a first order approximation in 
ΔCT can be used, but the final results for OR will only differ by some common factor, and 
comparisons among populations or the study of trends would remain legitimate. What is more 
noteworthy is that this first-order approximation leads not only to OR values that are the right 
order of magnitude, but also in the same range of values reported in earlier in vivo studies [19, 
21, 24, 27]. A future refinement of the choroid volume estimation may be to use a wide angle 
OCT for collecting data from a broader area of the fundus, or even volume reconstructions. 
Nevertheless, such volumes must be obtained significantly faster than the heart rate, which is 
not possible using technology that is currently in widespread clinical use . Of note, the amount 
of time and processing required to analyze time series of volume reconstructions would be 
increased by approximately two orders of magnitude. 

From in vivo studies, Dastiridou et al. estimated ocular rigidity by cannulating the anterior 
chamber of patients undergoing cataract surgery and recording pressure change for known 
volume infusion [19]. These results suggest the existence of a negative correlation between 
the axial length and rigidity, which we also observe from our results, providing further 
evidence to the validity of our method. 

5. Conclusion 

We have presented a novel approach to measure choroidal blood flow and ocular rigidity. To 
the best of our knowledge, this is the first non-invasive method that allows calculation of the 
true OR parameter as defined by Friedenwald, as it is based on directly quantifying ocular 
volume changes rather than estimating it based on FPA or a Doppler flowmetry signal. The 
method relies on measuring IOP and OPA using dynamic contour tonometry, as this 
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technology enables the most precise estimation. We strongly believe the combination of deep 
penetration dynamic OCT imaging and the powerful automated image segmentation we 
present is seminal to further understanding of key biomechanical determinants to ocular 
disease, and will become clinically invaluable as these measuring devices become more 
accurate. 
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