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A B S T R A C T

DNA fiber fluorography is widely employed to study the kinetics of DNA replication, but the usefulness of this
approach has been limited by the lack of freely-available automated analysis tools. Quantification of DNA fibers
usually relies on manual examination of immunofluorescence microscopy images, which is laborious and prone
to inter- and intra-operator variability. To address this, we developed an unbiased, fully automated algorithm
that quantifies length and color of DNA fibers from fluorescence microscopy images. Our fiber quantification
method, termed FiberQ, is an open-source image processing tool based on edge detection and a novel segment
splicing approach. Here, we describe the algorithm in detail, validate our results experimentally, and benchmark
the analysis against manual assessments. Our implementation is offered free of charge to the scientific com-
munity under the General Public License.

1. Introduction

DNA replication is tightly regulated by a myriad of molecular me-
chanisms that ensure accurate transmission of genetic information to
daughter cells. The fidelity of this process can be compromised by DNA
replicative stress, i.e., the abnormal slowing down or stalling of DNA
replication forks (RF) [1]. Indeed, stalled RF must be resolved in a
timely manner to prevent their “collapse” into highly-genotoxic DNA
double-strand breaks (DSB), which in turn engender chromosomal re-
arrangements and genomic instability [2]. Replicative stress may arise
from various impediments to DNA synthesis, such as DNA secondary
structures (eg. G-quadruplexes, palindromes) [3], RNA:DNA hybrids (R-
loops) [4], collisions between replication and transcription machineries
[5], dNTP pool imbalances [6], or DNA adducts induced by any among
a plethora of genotoxins (including endogenous agents, environmental
mutagens, and chemotherapeutic drugs). Mutation or defective reg-
ulation of essential DNA replication factors, as well as activation of
certain oncogenes including Ras Myc, and Bcl-2, have also been shown
to cause abnormal DNA replication dynamics [7,8]. The resultant re-
plicative stress-induced genomic instability constitutes a critical

determinant in both cancer development and treatment. Replicative
stress is also implicated in the molecular pathogenesis of aging and
neurodegenerative disease, as well as developmental syndromes such as
primordial dwarfism [9,10].

DNA fiber fluorography is commonly used to evaluate RF progres-
sion at the level of individual DNA molecules [11]. This method is
based on the incorporation of halogenated nucleotide analogs, such as
chloro- (CldU), iodo- (IdU), or bromo-deoxyuridine (BrdU) into nascent
DNA at RF in living cells. In a typical experiment, sequential in-
corporation of two nucleotide analogs, e.g., IdU and CldU, is performed.
Cells are exposed to DNA replication stress-inducing treatments during
or after the second labeling period [12]. Following cell lysis and
spreading of DNA on microscopy slides, DNA molecules are labeled
using anti-IdU and anti-CldU antibodies coupled to different fluor-
ophores. Two-color images generated by fluorescence microscopy then
reveal contiguous labeled regions in elongated DNA fibers. Measure-
ment of the respective lengths of these labeled stretches of DNA permits
quantification of RF progression. Variations of this general experi-
mental strategy have been used extensively to quantify DNA replication
dynamics in the context of replicative stress induced by a plethora of
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experimental conditions, including exposure to chemotherapy drugs
and expression of oncogenes [13,14].

Evaluation of DNA fiber length is generally performed manually
using simple image manipulation tools. This procedure is laborious and
subject to inter-user variability stemming in part from unintended bias
in the choice of fibers to be measured. These problems highlight the
need for a reliable computational method for unbiased analysis of DNA
fiber immunofluorescence images. To the best of our knowledge, the
only available tool is not free [15], and the source-code not open,
rendering it unavailable for wide distribution and public validation.
Here we present FiberQ, a novel, fully-automated algorithm to segment
(ie. delineate) and quantify labeled DNA fiber length from fluorescence
microscopy images. FiberQ is based on edge detection filters and spli-
cing techniques, and provides rapid, reliable, and unbiased analysis of
DNA fibers. We describe our algorithm in full detail, and use images
obtained under different experimental conditions to compare its per-
formance with manual segmentation. Our open-source software is of-
fered free of charge to the scientific community.

2. Results

2.1. Inter-user variability upon manual quantification of DNA fibers on
immunofluorescence images

DNA fiber immunofluorescence images display variations in fiber
density, straightness, branching, and staining intensity. Inter-user
variability due to biased identification and inaccurate measurement of
isolated fibers is expected. To evaluate this variability, three experi-
enced users were asked to manually segment the same set of 6 images
obtained from two different experiments (3 images per experiment).
Fig. 1A shows an example of such images extracted from the second
sample. Cells were pulsed sequentially with IdU and CldU such that
bicolor contiguous regions of DNA fibers represent progressing RF
which first incorporated IdU, and then CldU, into nascent DNA. Both
experiments only differ in the incubation time of the second pulse
(20min for Experiment 1 and 30min for Experiment 2). Using a widely-
available open-source image manipulation software, GIMP (GNU Image
Manipulation Program), users colored CldU and IdU fiber sections in
red and green, respectively. For each bicolor fiber, the ratio r
( =r )CldU length

IdU length , a commonly-used metric to quantify the dynamics of
RFs [11,13,14], was measured.

Despite the global increase of ratio distributions between both ex-
periments showing that the manual quantification is consistent with the
biological process, statistically significant differences were observed
between User 3 and the other two users (see Fig. 1 and Table 1).

Disagreement among users illustrates the challenges of manual se-
lection of fibers and can be explained by several factors:

1) The number of segmented fibers varied between users (Table 2). For
example, User 2 measured 61 more fibers than User 1 and 37 more
fibers than User 3 in Experiment 1, which represents respectively
21% and 13% of all the 285 segmented fibers (Table 2). Moreover,
only 16% and 23% of the total number of segmented fibers were
quantified by every user for experiment 1 and 2 respectively. As an
illustration, Fig. 1B shows how many users chose each segmented
fiber in an image extracted from Experiment 2.

2) Overlap between IdU and CldU signals complicates the precise lo-
calization of label changes, leading to variations in r ratio quanti-
fication between users for a given fiber (see Fig. 2A–C).

3) Staining gaps that split fibers into smaller segments may cause
disparities between users. Indeed, splicing such segments into a
single fiber is a subjective choice (see Fig. 2D).

4) Some users may tolerate high radii of curvature in single fibers
whereas others prefer straight fibers (see Fig. 2E,F).

5) Entangled fibers, debris and non-specific antibody staining can

interfere with accurate measurements (see Fig. 2G).
6) Loss of focus during long quantification sessions yield mistakes

ranging from delineation outside of the fiber (Fig. 2B-User 1) to
omission of small low contrasted segments (Fig. 2H-User 1 and 3).

Importantly, most biases are not only a source of variability for
human segmentation, they also pose a challenge for the development of
image processing segmentation algorithms. Thus, FiberQ includes
mathematically well-defined criteria for identification of DNA fibers
within a noisy image, robust fiber splicing rules for bridging the gaps
along elongated straight fibers, and strategies for removal of un-
exploitable tangled fibers.

The pipeline of FiberQ is summarized in Fig. 3 and detailed in the
Materials and Methods section. Briefly, after a preprocessing step in
which fibers are enhanced with respect to the background, DNA fibers
are detected using an ad hoc edge detection method inspired from
Canny’s [16] and Marr Hildreth’s [17]. The splicing of nearby segments
that may belong to a single fiber is based on their curvature and dis-
tance. Unexploitable clusters of fibers are removed by establishing the
maximum local fiber density. Finally, color transitions are determined
by analyzing the difference in fluorescence between IdU and CldU
channels.

2.2. Comparing FiberQ vs manual quantification

Manual quantifications were compared with our algorithm by
computing the correlations between both methods, as well as inter-
operator differences for humans and FiberQ. We used a database of 98
images and measured the median CldU/IdU length ratios for each
image. We observed a very good correlation between the algorithm and
users (Pearson’s coefficient of 0.79), demonstrating that FiberQ is
consistent with trained users’ observations (Fig. 4A).

To evaluate inter-operator differences for individual fibers, 12
images were segmented manually by three experienced users and
FiberQ. For each fiber segmented by two operators, we compared their
respective lengths and ratios r by using three metrics: C C,opi opj

green
opi opj
red

, , and
Δratioopi opj, .

- C and Copi opj
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, , measure the difference of length between operator
i and operator j normalized by the mean of the 2 lengths:
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where lopi
green (resp. lopj

green) are the length of the green part of the fiber
measured by operator i or j.

- Δratioopi opj, is the difference of CldU/IdU ratios for a fiber segmented
by opi and opj.

For the above metrics, only bicolor fibers were considered, and their
distributions were computed for each possible pair of operators
(Fig. 4B–D). We observed similar inter-operator variability when com-
paring either FiberQ vs users, or User i vs User j. We also counted the
fibers segmented by FiberQ that were also quantified by the human
users (Table 3) and found that the majority of fibers (73%) are shared
by at least one user. The remaining 27% include a mix of what seem to
be “good” fibers forgotten by users, mistakes made by FiberQ and also
ambiguous situations (see S.Fig. 1).

2.3. Performance of FiberQ in biologically-relevant experimental conditions

We next sought to validate FiberQ experimentally by comparing the
RF progression in samples treated with hydroxyurea (HU) vs untreated
controls. Hydroxyurea inhibits the activity of the ribonucleotide re-
ductase enzymatic complex [18], thereby depleting deoxyribonucleo-
tide pools and strongly slowing down RF progression. We first
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quantified images acquired from a typical experiment in which HU was
included in the culture media of HeLa cells during the second pulse with
halogenated nucleotides (Fig. 5A-B). IdU/CldU pulses were 30min/
60min for the first experiment, and 30min/90min for the second ex-
periment. As expected, both FiberQ and manual quantifications reveal
that CldU-labeled tracks are shorter in HU-treated samples than in
control untreated samples, leading to reduced CldU/IdU length ratio
(Fig. 5A-B).

Our group and others have previously shown that nascent DNA is
unstable in certain cell lines due to aberrant nuclease activity at stalled
RF [13,14]. We also recently showed that overexpression of all three
subunits of the Replication Protein A complex suppresses such nascent
DNA instability in the ovarian cancer cell line OV1946 [14]. To eval-
uate the stability of nascent DNA at stalled RFs, OV1946 cells were
exposed to HU for 3 h after the second pulse. Reduction in the length of
the second label (CldU) upon incubation with HU reflects nuclease-
mediated degradation of nascent DNA, which is rescued by RPA over-
expression. Both manual quantification and our algorithm confirmed
that GFP-RPA expression leads to higher CldU/IdU ratios vs GFP alone,

as expected (Fig. 5C). We note that measurements performed with Fi-
berQ generally display higher variance, partly due to a much larger
number of measured fibers.

We also validated FiberQ by varying the duration of the nucleotide
analog pulse and evaluating the effect on labeled track length.
Incubation time for the second nucleotide analogue (CldU) was in-
crementally increased from 10 to 90min, whereas the IdU pulse period
remained constant at 20min. Manual and FiberQ quantification of the
images indicate, as expected, an increase in CldU/IdU ratio for CldU
labeling periods of up to 60min (Fig. 6A-B). Intriguingly, we observed
that the length of the CldU tracks reaches a plateau between 60 and
90min of labeling. Examination of the images reveals that this is likely
due to the presence of extremely long fibers, which are almost in-
variably entangled in clusters or cut out of the image field. Only very
short isolated DNA molecules can be detected under these conditions,
which introduces biases in both manual and automatic segmentations.

Fig. 1. Inter-user variability. Three experienced users segmented the same set of 6 images obtained from two samples. A- Example of one fluorescent image from the
second sample. B- Illustration of the different segmentations performed by three experienced users. Yellow fibers were segmented by the 3 users, orange fibers by only
2 users and red fibers by only 1 user. C- Ratio (CldU/IdU) distribution for each user (sample 1). The distribution of the 3rd user shows a significative difference
(p<10−2 between User 1 and User 3, p<10-4 between User 2 and User 3, p < 0.02 between FiberQ and User 3, Mann Whitney test). D-Ratio (CldU/IdU)
distribution for each user (sample 2). The distribution of User 3 shows a significative difference with User 2 (p< 10-4) and with FiberQ (p< 10−2).

Table 1
Inter-User variability: p-values for each Mann-Whitney test on the ratio distributions (CldU/IdU).

User 1 vs User 2 User 1 vs User 3 User 2 vs User 3 FiberQ vs User 1 FiberQ vs User 2 FiberQ vs User 3

Experiment 1 0.38 2.7e-3 1.6e-5 0.90 0.35 0.01
Experiment 2 0.057 0.084 4.0e-4 0.21 0.85 9.5e-3
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Table 2
Inter-user variability: manual quantification of CldU- and IdU-labeled DNA fibers by three experienced users. The results of two independent experiments are
presented. The last three columns show the P-value when comparing distribution of ratios r =r( )CldU length

IdU length between users.

Total nb of manually
segmented fibers

Fibers segmented by
User 1

Fibers segmented by
User 2

Fibers segmented by
User 3

Fibers chosen by
only one user

Fibers chosen by
only two users

Fibers chosen by
the three users

Experiment 1 285 87 (31%) 148 (52%) 111 (39%) 166 (58%) 72 (25%) 47 (16%)
Experiment 2 273 97 (36%) 143 (52%) 98 (36%) 100 (37%) 111 (41%) 62 (23%)
Total 558 184 (33%) 291 (52%) 209 (37%) 266 (48%) 183 (33%) 109 (20%)

Fig. 2. Examples of segmented fibers by manual users and FiberQ. Lengths of the IdU and CldU are respectively written in green and red. For bicolor fibers, the ratios
(CldU/IdU) are indicated in white.
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3. Materials and Methods

3.1. DNA Fiber assay

Exponentially growing Hela cells were labeled with 10 μL IdU for a
duration T1. Cell were washed twice with 3ml PBS, then labeled with
250 μL CldU for a duration T2. Cells were washed, harvested, and re-
suspended in PBS at a final concentration of 500 cells/μL. Two μL were
transferred to a slide, overlaid with 7.5 μL lysis buffer (0.5% SDS,
200mM Tris-HCl (pH 7.4), and 50mM EDTA), and incubated at room
temperature for 3min. Slides were tilted to allow DNA to spread by
gravity, air-dried for 7min, fixed for 10min with freshly prepared 3:1
methanol/acetic acid, and air-dried for 7min. DNA was denatured by
incubating the slide in 2.5 M HCl for 80min, followed by three washes

with PBS. Blocking was performed with 200 μL 5% BSA for 20min. For
immunostaining, slides were incubated for 2 h with primary antibodies;
ab6326 anti-BrdU (cross-reacts with CldU) antibody (rat) (1:400) and
BD Biosciences 347580 anti-BrdU (cross-reacts with ldU) antibody
(mouse) (1:25) in 5% BSA in PBS. Slides were washed three times with
PBS-T (PBS+ 0.05% tween), then once with PBS. Next, slides were
incubated for one hour with the secondary antibodies; anti-rat AIexa-
594 (1:100) and goat anti-mouse Alexa—488 (1:100) in 5% BSA in PBS.
Slides were washed three times with PBS-T (PBS+0.05% tween), then
once with PBS. Slides were allowed to dry in air for few minutes then
mounting medium was added and images acquired using two different
microscopes: either GE Healthcare Deltavision or ZEISS Axio Imager 2.

Fig. 3. General Framework of FiberQ. After a preprocessing step in which fibers -roughly segmented with the Edge detection method- are enhanced with respect to
the background, the Point Spread Function (PSF) of the imaging system is calculated. The PSF aims at tuning spatial parameters (convolution filter size, maximum
splicing distance, etc.) Then, a better segmentation is obtained on the enhanced image with tuned parameters. Unexploitable clusters of fibers are detected by
measuring local fiber density. A Fiber Splicing algorithm connects nearby segments that belong to the same fiber and deletes fibers passing through hugh fiber density
zones. Finally, a color label (e.g. red or green) is assigned to differentiate CldU vs IdU signals. This color assignment is based on the analysis of the intensity of both
IdU and CldU channels.

Fig. 4. Comparison of FiberQ vs human users. A- Correlation plot for 98 images quantified by FiberQ and manual users. B- Distribution of Copi opj
green

, (normalized
difference of lengths for green portions) for each pair of operators. C- Distribution of Copi opj

red
, (normalized difference of lengths of red portions) for each pair of

operators. D- Distribution of Δratioopi opj, (difference of ratios) for each pair of operators.
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3.2. FiberQ algorithm: Method

From a raw image made up of two color channels (eg. IdU and
CldU), DNA fibers are segmented and the length of each fluorescent
marker is quantified to evaluate DNA replication dynamics. Our fra-
mework (summarized in Fig. 3) is divided in four steps. Fibers are first
enhanced with respect to the background and then extracted with an
ad-hoc edge detection method. As this first segmentation is interfered
with by gaps within strands, a splicing step reconnects sections be-
longing to single DNA fibers. Finally, we quantify the length of each
fluorophore by analysing channel intensity differences.

In our analysis pipeline, some parameters have been experimentally
optimized using a large image database obtained with two imaging
systems (GE Healthcare Deltavision and ZEISS Axio Imager 2). All these
Experimentally Optimized Parameters (noted EOPi hereafter) are ex-
pressed related to the diameter of the Point Spread Function of the
imaging system to derive spatial metrics. If necessary, they can easily be
tuned by the user.

Table 5 displays the values that we have established in our im-
plementation of FiberQ.

3.2.1. Preprocessing: color enhancement and point spread function
estimation

To smooth the raw image without altering the edge, a 4 × 4 × 1
median filter is applied to both channels. For simplicity, we call I1, the
channel of the first nucleotide analog, and I2 the channel of the second
one. The two channels are combined into a grayscale image,

=
+Igray

I I
1 2

1 2 .
An ad-hoc edge detection algorithm (see details below) is applied on

Igray1 to obtain a first rough segmentation of DNA fibers. This rough
segmentation (BW )DNA1 is a binary image in which true pixels represent
fiber pixels and false pixels are considered background.

Intensity normalisation is performed separately on both I1 and I2.
On each of these two channels, we calculate the 5th and the 95th in-
tensity percentiles of fiber pixels (ie. pixels belonging to the foreground
mask of BWDNA1).We linearly map the intensity values of both channels
by saturating the bottom and top intensities to those two percentiles.
The new normalised channels I1N and I2N which are matrices of doubles
in the interval [0,1], have enhanced fiber fluorescence with respect to
the background (Fig. 7B). A new grayscale image, I ,gray2 is obtained by
combining I1N and I2N.

The rough DNA mask, BWDNA1, is also used to estimate the diameter
of the Point Spread Function (PSF) of the imaging system in pixel units.
Throughout the analysis pipeline, this PSF is used as a characteristic
metric to adjust all spatial parameters (morphological operators,
structuring elements, convolutional filters kernels, etc.) to the in-
dividual images. The diameter of the PSF is estimated by measuring the
fiber width: for each fiber, the intensity distribution on a cross section s
is fitted by a Gaussian function = −

−P μ σ A exp( , ) . ( s μ
σ

( )
2

2

2 ). The PSF
diameter is set to the median of all σ measured.

3.2.2. First fiber segmentation
To obtain a first fiber segmentation adapted to the structure of the

input image, the ad-hoc edge detection method is applied again but this
time on the enhanced grayscale image ( Igray2) with tuned spatial
parameters based on the PSF (see details below). At the output of the
edge detection method, we get a rough fiber segmentation BW .DNA2

Large clusters of overlapping DNA molecules cannot be adequately
analysed and therefore need to be removed from BWDNA2. We calculate
the foreground local pixel density d x y( , ) by convolving BWDNA2 with a
gaussian kernel of standard deviation =σ EOP PSF.1 . Zones where

<d x y EOP( , ) 2 (ie. zones with a high concentration of fibers) are dis-
carded for fiber analysis (Fig. 7C).

A second filter removes objects of width larger than EOP3 times the
PSF. More precisely, we discard objects for which the minor axis of theTa
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ellipse that has the same normalized second central moments are larger
than such threshold.

3.2.3. Edge detection method
The edge detection method aims at roughly segmenting DNA fibers.

It is applied twice in our whole algorithm: the first time to compute
Igray1 during the pre-processing step with a default PSF (PSF=2 pixels),
and the second time to obtain Igray2 during the first fiber segmentation
step using the measured value of the PSF.

This edge detection method is made up of two parts. Briefly, we first
use an edge detection that produces many false positives and then use a
very selective edge detection that yields numerous false negatives. The

output image is a combination between those two edge detection
methods.

First, the input image (Igrayi with =i or1 2) is convolved with a
Laplacian of Gaussian (LoG) filter, whose standard deviation is set to
EOP4 PSF. Edge pixels, defined as zero-crossing pixels, are closed 8-
connected contours delimiting fibers that we fill. The resulting binary
image (Fig. 8B) called ILoG contains a high number of false positive
contours originated from noise and debris.

Next, a more selective contour detection is performed. We compute
two smooth gradients of Igrayi in x and y direction: ∇ ∇I I,x gray y grayi i. Those
smooth gradients are obtained by convolving Igrayi with a 1D-derivative
of gaussian ( =σ PSF). Then, the gradient modulus M is calculated:

Fig. 5. Comparison between control and HU-treated samples. A, B- HU is incorporated during the second pulse. Orange and Blue violins are respectively the measures
of our algorithm (FiberQ) and a manual user. Experiments in A and B only differ in the incubation time of CldU (90min vs 60min). ***: p< 10−31 (Mann Whitney
test). N: number of quantified fibers. C- Comparison between OV1946 cells overexpressing RPA vs GFP. Cells are incubated in HU-containing medium for 3 h after the
CldU pulse. Distributions of ratios of the HU-treated sample normalized by the median of the control sample are displayed. FiberQ quantification is in orange, manual
quantification in blue. ***: p< 10-15 (Mann-Whitney test). N: number of quantified fibers.

Fig. 6. Variation of the incubation time of CldU A- FiberQ quantification for CldU incubation time varying from 10 to 90min. N: number of quantified fibers. B-
Manual quantification for CldU incubation time varying from 10 to 90min. N: number of quantified fibers.
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= ∇ + ∇M I Ix gray y gray
2 2

i i . Finally, a pixel P of Igrayi is a contour if it
fulfills two conditions: (i) its gradient magnitude M(P) is bigger than
Otsu’s threshold totsu applied on M, and (ii) P is a maximum in the
gradient direction =

∇

∇
θ arctan ( )I

I
y gray

x gray
. Note that this selective contour

detection is equivalent to Canny edge detection with both thresholds
equal to t .otsu The contours obtained with this selective method are
morphologically dilated with a disk of diameter PSF

EOP5
. The resulting

binary image is called ICanny.
We combine these two binary images (ICanny and ILoG) by deleting all

objects from ILoG that have no intersection with ICanny. The resulting
image (BW )DNAi is the output of the edge detection method.

3.2.4. Fiber splicing
The main drawback of this first segmentation (BWDNA2) is the fre-

quent fragmentation of DNA fibers (Fig. 7C, D). A splicing method is
thereby necessary to reconnect portions of the same DNA fiber (Fig. 7E,
F). Briefly, large objects of BWDNA2 are successively spliced with nearby
objects if several continuity criteria (based on distance and fiber

orientation) are fulfilled.
All objects of BWDNA2 are classed in two different groups: Blobs and

Strands (Fig. 7D). A Blob is a small and compact object which can be
modeled by an ellipse with a relatively low eccentricity. In BW ,DNA2

even though many blobs are the consequence of noise in the original
image, some of them are portions of a longer fiber. On the other hand, a
strand is a longer curvilinear object that is a fraction or the totality of a
DNA fiber. Practically, a strand fulfills two criteria:

(i) High eccentricity e: > ≈e 0.96815
4 (ie. the ratio of the large axis

of the ellipse over the small axis has to be higher than 4)
(ii) Low solidity s: = <s 0.7object Area

area of its convex hull .
(iii) Minimum length l: >l EOP PSF6

All other objects are blobs.
Strands are skeletonized by applying successive morphological ero-

sions. For each strand, we store their pixel coordinates (x, y), the po-
sition of their two endpoints (EP) and the orientation of the tangents at

Fig. 7. From the raw image to the final segmentation.
A- Raw image [I1 : red channel (CldU), I2 : green
channel (IdU)]. B- Color enhancement after the pre-
processing step [I1N, I2N]. C- Superposition of BWDNA2

in white (segmentation of DNA fibers with the tuned
edge detection method) and unexploitable high density
areas in red obtained by thresholding the local white
pixel density (d(x,y)< EOP2). D- Zoom of the yellow
rectangle in C. DNA Fibers are fragmented. An example
of blob and an example of strand are respectively
flagged by a red full line arrow and a blue dotted
arrow. E- SKELDNA: Result of the splicing method. F-
Zoom of the green rectangle in E. Fragmented fibers
have been spliced. G– Color assignment: analysis of the
red and green channels of the color enhanced image
(B).
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each one of the two endpoints (Fig. 9A). Such two tangents are com-
puted after smoothing the coordinates (x,y) using a local least square
regression with a 1st degree polynomial model spanning a length of
EOP PSF7 .

For each blob, only the coordinates (x y, )c c of its centroid are stored.
With all this data, a graph G is built (Fig. 10) where each object

(strand or blob) is a node. The edges of G link objects whose EP are
separated by a distance D inferior to DMax ( =D EOP PSF)Max 8 . Actually,
an edge symbolises a potential connection between the EPs of two dif-
ferent objects. Each edge is characterised by a doublet =edge s D( , )
where s is a score based on the angular continuity of the potential

connection and d is the distance between the two objects. Those two
parameters (s and D) will be used to rank all potential connections from
a given strand.

Calculation of the score s :

- Connection between two strands:
Fig. 9A shows the different parameters used in the calculation of the
score s. θEP1 and θEP2 are the orientations of the tangents for both
endpoints EP. θ1 and θ2 are the angles between the tangents and the
segment connecting EP1 to EP2. We define = − −Δθ θ θ πtan tan tan2 1 .
If the connection is continuous, Δθ ,tan θ1 and θ2 should be minimal.

Fig. 8. Edge detection method. A– Igray2 : combination of the normalized intensity channel : Igray2 =(I1N+I2N)/2. B- ILoG : First edge detection [Laplacian of Gaussian
(LoG)]. C– ICanny : Second edge detection. D– BWDNA2 : Combination of ILoG and ICanny : Objects of ILoG that intersect a white pixel of ICanny are kept.

Fig. 9. Splicing parameters. A- Connection between 2 strands. θtan1 and θtan2 are the orientation of the tangents at each endpoint (EP1, EP2) for each strand. θ1 and θ2
are the angles between the tangents and the connection segment [EP1, EP2] in yellow. θMax is the maximum of Δθtan, θ1, θ2. B– Connection between a strand and a
blob. θMax is the angle between the tangent and the connection segment [EP1,C] in yellow.
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We also define =θ Δθ θ θmax ( , , )Max tan 1 2 . The value of s from 1 to 5
is given according to the value of θMax (see Table 4). The advantage
of splitting the connections into five discrete classes rather than
assigning a continuous score value is that potential connections with
similar θMax have equal scores. The distance parameter D will be
used to rank the connections with the same score s.

- Connection between a strand and a blob:
Fig. 9B illustrates this configuration. Here, θMax is the angle between
the tangent of the strand and the segment that links the endpoint
and the centroid of the blob.

- Connection between two blobs:
As the splicing process begins from a strand and iteratively merges
nearby objects (blobs or strands), we never consider blob-blob edges.

The following splicing procedure is applied iteratively from the
longest to the smallest strand of the graph. Let stri be the ith strand
processed. First, all edges connected to stri are sorted in decreasing
order of score s. Strands with equal s are ranked in decreasing order of
distance D. Let’s note =edge s D( , )1 1 1 the first edge of the ranking. This
edge links stri to another object that we call obj1. We splice the strand stri
to obj1 if two conditions are fulfilled: (i) ≤s 41 , (ii) obj1 is not connected
to a better edge (i.e. an edge whose score s is strictly higher than s ,1 or

=s s1 and <D D )1 . If those two conditions are not fulfilled for edge ,1 we
try with the following edges in the ranking.

If a candidate objk meeting those requirements is found, stri merges
with objk ( ⟵ ∪str str obji i k): (i) stri is linked to objk by a straight line, (ii)
the node of stri in the graph merges with the node of objk. The new node
preserves the links of stri and objk (except the link between both objects)
but with updated value s D( , ).

At the end of this splicing step, we obtain a binary image containing
the skeletons of DNA fibers: SKELDNA (Fig. 7E). All skeletons with pixels
in high-density areas (as defined before in the first fiber segmentation)
are deleted. We also remove skeletons whose length is inferior to lmin (

=l EOP PSF)min 9 because they often are artefacts due to debris or non-
specific staining.

3.2.5. Color assignment
Once DNA fibers are segmented and skeletonized, we estimate the

color at each pixel of the skeletonized fibers by comparing intensities of
each channel: I1N and I2N. The objective is to convert color intensities
(doubles between 0 and 1) to a color label (e.g. IdU or CldU).

Each foreground pixel of SKELDNA is assigned a pair of intensities
referring to the normalised fluorescence of the two nucleotide analogs
in the vicinity of the pixel. To do so, each one of the two normalized
intensity images I1N and I2N is convolved with a Gaussian kernel of
standard deviation PSF, and multiplied element-wise by SKELDNA.
Following the pixels of each skeleton from one endpoint to the other, it
is possible to define two color intensity profiles: S1 (intensity profile of
the first nucleotide analog) and S2 (intensity profile of the second one).

We compute the color difference function as ΔS= S1 - S2, which can
be interpreted as the difference between the normalized fluorescence of
both channels. The zero-crossing of the function ΔS are computed to
partition fibers into segments of a predominant nucleotide analog.
Colors are assigned in two steps:

1 All Segment where |mean(ΔS)| is larger than a threshold (empiri-
cally set to 7%), are assigned to the predominant nucleotide analog
color.

2 Each remaining section is assigned as follows:
3 When the segment is surrounded by neighbours of the same color,
the same color is assigned.

4 When the segment is surrounded by neighbours of different colors,
the segment is split in halves and colors are assigned to match the
color of neighbours.

5 When the segment is located at the end of a fiber, the neighbour
segment color is assigned.

Thus, each skeleton is partitioned in sections of different colors. If
some sections are too small ( <length EOP PSF.10 ) they are considered
as mistakes: the color label of those sections is inverted so that they are
merged with their two neighbours.

Fig. 10. Graph of Strands and Blobs. A - Image of 3 strands (in blue) and one blob (in orange) B— Objects whose endpoints are separated by less than dMax are linked
by an edge (s,D). The angular score s is an integer between 1 and 5. The parameter D is the distance between the endpoints.

Table 4
Score s with respect to θMax . The lower is θMax , the higher the an-
gular score s is.

Value of θMax (in degree) Angular score s

≤θMax 2 5
< ≤θ2 5Max 4
< ≤θ5 10Max 3

< ≤θ10 15Max 2
< θ15 Max 1

Table 5
List of Experimentally Optimized Parameter. All these parameters are set as
multiplication factors of the PSF of the imaging system.

Parameter name Value Description

EOP1 8 Sets the size of the area used to calculate local fiber
density

EOP2 0.21 Density threshold
EOP3 3.6 Sets the maximum fiber width
EOP4 1 Sets the kernel size of the Laplacian of Gaussian filter
EOP5 2 Sets the length of the structural element used for

dilating Canny’s edges
EOP6 9 Set the minimum length for a strand
EOP7 6 Sets the spanning length of the 1st degree polynomial

for smoothing fiber skeletons
EOP8 11 Sets the maximum splicing distance
EOP9 15 Sets the minimum length for fibers after splicing
EOP10 6 Sets the minimum length of a pulse section within a

fiber
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4. Discussion

Fluorescent imaging of DNA fibers is widely used to study the dy-
namics of RF progression, as a proxy for several aspects of genomic
stability and replicative stress. The vast majority of studies using this
technology are based on manual segmentation of fibers, using simple
image processing software to facilitate record keeping and annotation.
Our results demonstrate a significant degree of variability when
manually measuring DNA fibers, which compromises data reproduci-
bility and renders analyses prone to bias. The automated segmentation
method that we present here (FiberQ) is devoid of subjectivity and
enables rapid analysis of large image databases, thereby increasing
statistical power.

The open-source implementation we provide was programmed
using Matlab. We also made available a free compiled version of the
code which can be used by investigators without programming ex-
perience or access to this commercial language. The output of FiberQ
consists of four images outlining the results and a spreadsheet with
single fiber details. Images show 1) which of the fibers where chosen for
analysis, 2) skeleton versions of such fibers with a tag that allows
identification in the spreadsheet, 3) the ratio (second/first pulse) for
each one of them and 4) high density areas not considered in the
analysis. The spreadsheet contains all necessary information for statis-
tical analysis: the file name of origin, the fiber tag, the combination of
colors found, the length of each nucleotide label.

The proposed framework is robust and can be adapted to various
experimental conditions. Indeed, the use of the Point Spread Function,
which is computed for each image using fiber width auto-calibrates free
parameters of the algorithm. In addition, this characteristic metric en-
ables removal from the analysis of anomalous objects such as small
nonspecific staining spots, unusually large fibers and areas character-
ized by excessively high fiber density. Moreover, even if the calibration
of all parameters (thresholds, splicing distance, filter size) is done au-
tomatically, users can also fine tune them manually. The three most
important parameters that may need adjustment to experimental con-
ditions are: the maximum splicing distance used to connect fragmented
fibers (EOP8), the fiber density threshold used to remove unexploitable
clusters of fibers (EOP2) and the maximum fiber length after splicing.
We also provide some useful confidence metrics available in the output
spreadsheet for each segmented fiber, which consider their density,
maximum splicing distances and maximum splicing angle.

FiberQ was tested on a database of different images of varying
quality, signal to noise ratio, or fiber length which were acquired from
two different microscopes. Segmenting fibers in such images represents
a complex task because (i) fiber fluorescence is not homogeneous, (ii)
fibers are split in several segments, tangled in clusters, and/or mixed
with nonspecific stained objects. We note that our algorithm was im-
plemented specifically for the analysis of DNA fibers and was not op-
timized for DNA combing images. In our experience, the latter generally
present a much larger number of split DNA segments, which renders
adequate joining and segmentation of labeled tracks challenging.
Further optimization of the FiberQ algorithm will therefore be required
to make it reliable for DNA combing analysis.

We showed in Table 3 that 27% of fibers segmented by FiberQ were
not segmented by any other user. After close examination, we found
that this set of fibers contains good fibers ignored by users, fibers whose
configuration is too ambiguous to be taken into account, and erroneous
fibers. It is possible to reduce the number of ambiguous and erroneous
fibers by imposing more stringent constraints on the algorithm, i.e.
lowering the density threshold, the maximum splicing angle and re-
moving fibers with too high splicing distances. Since these three para-
meters are provided in the output spreadsheet, users can simply filter
unwanted fibers a posteriori.

We also observed that in the case of very long fibers split into a high
number of segments or blobs, our algorithm can yield aberrant results.
This problem was highlighted in the experiment where the incubation

time is varied from 10 to 90min, for which both manual and automatic
segmentation fail to detect the extension of fibers for long incubation
times (i.e. when fibers are very long; Fig. 6). Examination of the images
revealed that in the case of FiberQ, the above problem is the con-
sequence of mistakes during the splicing stage of the algorithm which
fails to connect all strands and blobs belonging to very long fibers. As
second pulse tracks are expected to be much longer than contiguous
first pulse ones, their ratio is often underestimated. While our results
suggest that such images also cannot be reliably quantified manually,
artifacts and mistakes appear to be worse with FiberQ. We also note
that we observed larger standard deviation in FiberQ measurements as
compared to manual quantification.

To improve accuracy, we propose that two main experimental
parameters should be optimized for automated analysis: (i) incubation
duration should be kept relatively short to reduce fiber length, and ii)
dilution of fibers on the slide might reduce clustering of fluorescent
DNA molecules.

In summary, FiberQ is an algorithm that greatly facilitates in-
vestigations on the dynamics of DNA replication by automatically
measuring the length of fluorescently labelled DNA fibers. Contrary to
manual techniques, FiberQ is devoid of inter/intra user variability. Our
algorithm should therefore be useful to reduce the tediousness, bias,
and poor reproducibility associated with manual quantification of DNA
fiber length.

Availability

FiberQ is an open-source collaborative initiative available in the
GitHub repository (https://github.com/pierreghesqui/FiberQ).
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